NASA-CR-194818

November 1989 UILU-ENG-89-2239
CSG-115

COORDINATED SCIENCE LABORATORY |

College of Engineering A0

i

9//V~ C;//’J/L;

PARAGRAPH: A
GRAPHICS TOOL
FOR PERFORMANCE
AND RELIABILITY
ANALYSIS

Kevin Douglas Lee

(NASA-CR-194818) PARAGRAPH: A N94-71345
GRAPHICS TOQL FNR PERFURMANCE AND

RELIABILITY ANALYSIS M_.S5S. Thesis

(T1linois Univ.) 51 p Unclas

29/61 0201486

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

A ab e hde sl A b LAl

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

REPORT DOCUMENTATION PAGE
a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

e —————— T - T
3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

UILU-ENG-89-2239

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING QRGANIZATION REPORT NUMBER(S)

(CSG-115)
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Coordinated Science Lab (if applicable) '
University of Illinois N/A NASA

Urbana, IL 61801

6¢c. ADDRESS (City, State, and 2iP Code)

7b. ADORESS (City, State, and ZIP Code)
1101 W. Springfield Avenue NASA-AMES Research
Moffett Field, CA 94035

Center

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it applicable)
NASA NASA AMES NCA2-385

see 7b

8¢. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

ELEMENT NO.

PROGRAM PROJECT TASK WORK UNIT
NO. NO. ACCESSION NO.

11. TITLE (include Security Classification)
PARAGRAPH: A Graphics Tool for Performance and Reliability Analysis

12. PERSONAL AUTHOR(S)

Lee, Kevin Douglas

Technical

13a. TYPE OF REPORT

FROM TO November, 1989

16. SUPPLEMENTARY NOTATION

13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [tS. PASGS COUNT

17. COSATI CODES

FIELD GROUP

SUB-GROUP

X-windows

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
multi-level simulation, graphics, animation, interviews,

9. ABSTRACT (Continue on reverse if necessary and identify by biock number)

PARAGRAPH is an animated graphics display package. It consists of
two parts: an interface to CSIM (a process based simulation language)
and a graphic display system. When a simulation model is executed
on CSIM the interface collects pertinent performance analysis data and
writes them to a file. This file is then fed to the graphic display
system which depicts the execution of the simulation model visually.

This report focuses on the graphical display system. Specifically it
describes the user interface and features of the display system. It

also explains how Interviews (which is based on X-windows) is used
as the basis for the design of PARAGRAPH. The last section contains
an example in which a basic load balancing simulation model is used
to demonstrate the features and the capability of PARAGRAPH.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
EIuNCLASSIFIEDUNLIMITED] SAME AS RPT. [DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL

21. ABSTRACT SECURITY CLASSIFICATION

22b. TELEPHONE (include Area Code)

22¢. OFFICE SYMBOL

——
DD FORM 1473, 84 MaAR

83 APR edition may be used until exhausted.

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.

UNCLASSIFIED

UNCLASSIFIED .
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

PARAGRAPH: A GRAPHICS TOOL
FOR PERFORMANCE AND RELIABILITY ANALYSIS

BY

KEVIN DOUGLAS LEE

B.S., Purdue University, 1987

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1989

Urbana, Illinois

“Funds for the support of thia study have been allocated by the NASA-Ames Research Center, Moffett Field,
California, under Interchange No. NCA2-385.”

{

(B

pace_ {1 INTENTIGNALLY BLANK iii

ACKNOWLEDGEMENTS

I would like to thank Professor Iyer for his excellent guidance and encouragement. I
would also like to thank my parents, Franklin and Rita Lee, and also Kumar Goswami
for all of their help and support. A very special thanks goes to Anna Lam, my partner

for life.

CHAPTER

1

2

INTRODUCTION .

BACKGROUND . .

2.1 Previous Work

iv

TABLE OF CONTENTS

..............................

2.2 Graphic Viewing Package

USER INTERFACE
3.1 Windows

3.2 Menus

..............................

..............................

..............................

321 Mallmenu ¢ v v v v et e e e e e e e e e e e e e e

322 Nodemenu v v v v v ittt it et et e

DESIGN

4.1 Classes

4,2 Data Structures

..............................

..............................

PAGE

10

10

13

21

22

24

5

6

4.3 Communication Messages

43.1 Detailedlevel o . i i e e e

432 Networklevel i i i e e

44 Faults . ..

A LOAD BALANCING SIMULATION,

CONCLUSIONS

REFERENCES

................................

................................

26

27

28

29

35

41

42

vi

LIST OF FIGURES

FIGURE PAGE
3.1: Program Flow Chart 14
3.2: Window Hierarchy 15
3.3: An Example of a Single Bus Network Level Window 15
3.4: An Example of a Hypercube Network Level Window 16
3.5: An Example of a Physical Level Window 17
3.6: An Example of a Detailed Level Window 17
3.7 MainMenu e 18

3.8: Speed Selection Dialog Box 18

3.9: Select Ranges Submenu. 18

vii

3.10: An Example of a Range Selection Dialog Box

3.11: Redisplay Window Submenu

3.12: Communications On/Off Submenu

3.13: Open/Close Windows Submenu . .

3.14: Smallnode Menu

...................

3.15: Smallnode Facilities Display Submenu.

4.1:

4.2:

4.3:

4.4:

4.5:

4.6:

4.7:

5.1:

5.2:

An Example of a CPU Facility . . .
An Example of a Process
An Example of an Mbox

An Example of a Smallnode

An Example of Detailed Level Communication Graphic Object Place-

...................

Network Level Single Bus Communication Graphic Object Placement

Network Level Hypercube Communication Graphic Object Placement

Arrivalof a New Job

Broadcasting a Mean Queue Length

...................

...................

19

19

19

20

20

20

31

31

31

32

32

33

34

38

38

5.3: TransferofalJob

5.4: Load Balancing Physical Level

......................

......................

CHAPTER 1

INTRODUCTION

Evaluating the performance of complex systems is a critical step in the design and
planning of such systems.]jesign evaluation is often based on a performance model
of the system. Several special purpose modeling languages have been developed to aid
the performance evaluation process. With these languages, performance models can
be quickly and easily constructed, evaluated and verified. Simulation environments are
becoming more graphically oriented with the recent widespread availability of inexpensive
graphic workstations. By displaying performance models pictorially, evaluation has been
quickened and simplified.

In this thesis, a graphic viewing system that can be interfaced with a complex sim-
ulation environment to provide a real-time display of various system activities has been
developed. Currently the system is linked to CSIM [1], a process oriented simulation lan-
guage based on the C programming language. The interface to the simulation language

is set up such that the graphics are not directly dependent on the simulation language.

The CSIM simulation language was slightly modified to interface with the graphics. To
use this viewing package, a CSIM simulation is written with a few extra instructions for
the initialization of the graphics. The CSIM simulation is executed, as usual, and two
additional files are created, generating the graphics information. Using the information
in these two files, the simulation can then be viewed in real time. In this context, real
time refers to the simulation time. By displaying the simulation in real time, flaws and
benefits of complex systems can often be seen that are not always noticed in the final
statistics.

The current version of the graphic viewing system uses X11 windows running on a
Sun workstation. The graphics are generated with the InterViews graphics libraries in
C++.

This thesis is organized as follows. Previous work done with graphics oriented simula-
tion environments will be discussed in Chapter 2. A high-level look at the design of this
graphic viewing package, including the window and menu interfaces, will be discussed in
Chapter 3. In Chapter 4, a more detailed look at the design of the viewing package will
be discussed, including the data structures design. In Chapter 5, a load balancing algo-
rithm simulation will be presented. Finally, some conclusions about this graphic viewing

package will be made in Chapter 6.

CHAPTER 2

BACKGROUND

2.1 Previous Work

The need to simplify the design of complex simulation models has spurred research
in graphically based simulation environments. Browne, Neuse, Dutton and Yu [2] de-
signed a system which graphically simulates generalized queuing network models. This
system allows users to graphically design complex systems, including computer and com-
munications systems, by combining a specialized programming system and a graphical
methodology. The Performance Analyst’s Workbench System (PAWS) language eases
the creation and evaluation of queueing network models. Information Processing Graphs
(IPGs), a graphical methodology for modeling, is a directed graph where the nodes repre-
sent devices/resources and the arcs represent workloads flowing among the nodes. IPGs
and the PAWS programming system were developed in conjunction with each other. A

graphical editor is used to create the IPG by placing nodes, connecting the nodes with

arcs and assigning specifications for the nodes and arcs. From the IPG a PAWS program
is generated and the model can then be executed.

Kurose and Gordon (3] designed a high-level interactive, graphics-oriented system
based on the RESearch Queuing package (RESQ). The RESQ simulation language [4] is
a special-purpose modeling language similar to PAWS. With this system, the model is
also created with a graphics editor. Icons that have specific graphical semantic definitions
of some element of the simulation model are placed in the modeling area. Each instance
of all icons has textual attributes assigned to it. The icons are connected together with
lines representing the routing of jobs. A RESQ model is created from the graphical
representation ::J.nd is executed. The user can view graphically all of the performance
measures of the simulation.

Melamed [5] created an interactive animated simulation package for queueing net-
works called the Performance Analysis Workstation (PAW). The PAW system simulates
queueing networks with a discrete event simulation system. With a graphics editor,.the
user draws the nodes of the network and specifies the topology by connecting the nodes.
The model is parameterized with a text editor by filling in captioned fields of forms.
With forms, the user no longer needs to know any syntax. The actual simulation is
executed by a Monte Carlo simulator. The simulation can be examined event by event.
The PAW system animates the screen with the transfer of transactions between nodes

and the creation and destruction of transactions. This feature is mainly used to verify

the validity of the model. When the model is determined to be valid, the animation is

not required and only the final statistics are collected.

2.2 Graphic Viewing Package

The emphasis of the graphics in the systems discussed in the previous section has been
on the input of the simulation model and the output of the simulation statistics. The
analysis of the models mainly consists of the final statistics of the entire simulation which
are displayed graphically. Unlike the systems described above, the graphics environment
described in this thesis uses a separate simulator, for example, CSIM. The simulation
details are sent to an output file which is used as input to the graphics environment to play
back the progress of the simulation in real time. This is somewhat similar to the PAW
system, but the system described in this thesis displays a variety of statistics in simulated
real time as well as the transfer of transactions and communications between nodes. This
allows the user to evaluate the performance at specific times of the simulation, not only
at the end of the simulation. Several levels of detail can be viewed as in the PAW system,
but the more detailed levels are not only used for validation of the model, but also in the

evaluation of the model.

CHAPTER 3

USER INTERFACE

The graphic viewing package developed in this thesis can run with minimal interven-
tion from the user, but an interface was built to allow the user to dynamically customize
the simulator display to view specific areas of interest. The general flow of the viewing
system is shown in Figure 3.1. All figures appear at the end of the chapter. First the
initialization file is read and the simulation is initialized. Once the simulation starts to
execute, the user has a choice of opening more detailed windows or altering the view of
any window. Initially, only one window is open but up to four more can be opened. All
commands are menu-driven via the mouse. If there is no user command pending, the

simulation reads data from the log file and updates the graphics display.

3.1 Windows

A total of five different windows are in this graphic viewing system. Each window

displays a different level of detail of the simulation. The window hierarchy is shown in

Figure 3.2. The available levels are the network level, the physical level, the selected
physical level, the detailed level and the selected detailed level.

The network level is considered the main level because it is always displayed, and
because of its versatility since almost all of the simulation data can be viewed from
this level. It is the only window that is dependent on the architecture specified in the
initialization file. Currently there are three different architectures supported: single-
bus, a 16-node hypercube and no-connection. An example of a single-bus a.rchit;ecture is
shown in Figure 3.3 and an example of a hypercube architecture is shown in Figure 3.4.
The no-connection architecture is very similar to the single-bus architecture except no
connections are shown between the nodes..

Each node can contain a variety of different facilities such as CPUs, disk drives, tape
drives, etc. Each facility can have multiple processes running on it. Each process can have
multiple mailboxes receiving communications from other processes. Facilities, processes
and mailboxes are each represented separately as graphic objects. Within each node of
the network level window, any of the facilities, processes or mailboxes contained in that
node can be displayed. The object that is displayed can be selected from the node menu
which will be discussed in more detail in Section 3.2.2.

All inter-node communications can be shown at the network level. In the initialization
file, the user defines the message types that will be used in the simulation up to a
maximum number of five. Each message type is assigned a color or pattern and is

displayed on the left side of the network level window. In Figure 3.3, only three different

message types are defined by the user thus only the three different patterns are displayed
with the corresponding message type names. In Figure 3.4, all five message types are
defined.

The physical level and the selected physical level display all the facilities in the entire
simulation and the facilities of selected nodes, respectively. For the selected physical
level, the nodes. are selected in the network level window by using the node menu. This
is useful for viewing only one node or a few specific nodes. An example of a physical
level window is shown in Figure 3.5.

The detailed level, as the name suggests, displays the most details of the simulation.
All of the facilities, processes and mailboxes and all communications are displayed. Unlike
the network level, this level can show all intra-node communications as well as all inter-
node communications. The selected detailed level, like the selected physical level, displays
only the facilities, processes and mailboxes of selected nodes. The communications that
are displayed in the selected physical level can originate and terminate in nodes that are
not selected and therefore not displayed. In this case the messages are shown heading
towards the edge of the window. A history of the last four messages is shown in this
level. The message types are also coded by the same color or pattern as in the top
level. In Figure 3.6, an example of a detailed level window is shown. This example has
a single CPU in each node. The last three messages are shownl to be originating from

node number one and are the same type.

All of the windows have a status box made entirely of text at the top of the windows.
The status box displays the name of the window, the names of the initialization and
log files, the simulation clock, the communication status, the pause status, and up to
two possible simulation messages. The communication status refers to the display of
communications in that window. If the communications are set to on, all of the messages
are displayed, and conversely, if the communications are set to off, none of the messages
are displayed. This feature applies only to the network, detailed and selected detailed
levels since these are the only windows that display communications. In Figure 3.3,
information in the status box can be interpreted as a network level window with lbal.init
and lbal.log as the initialization and log files, respectively. The ;ommunications are
currently on, the simulation clock is at 15.0 and the simulation message is nd: 0 zfer job
182904.

The amount of information to display can become larger than the screen size, es-
pecially in the detailed windows. For this reason, all the windows have vertical and
horizontal scrollers along the right and bottom sides of the window. By holding down
the middle button of the mouse on a scroller, the user can change the view of the win-
dow. The white box inside the gray box represents the current view relative to the entire
virtual view. For example, in Figure 3.5, the white part of the horizontal scroller covers
half of the entire scroller and is positioned against the left side. This means the current
view is of the leftmost half of the entire virtual window and to the right, the undisplayed

portion of the window is about the same size as the portion currently viewed. Similarly,

10

the vertical scroller shows that currently only about a fifth of the entire virtual window is
being displayed. The windows are automatically sized according to the number of objects
to be displayed. If there are too many objects in a window to be displayed on the screen
at the same time, the window is sized so that the entire window is shown on the screen
and the user may scroll around to see the rest of the window. All Qf the windows may
also be resized using regular X-windows commands, but the image inside the window

does not shrink or enlarge along with the window.

3.2 Menus

The menus are hierarchically organized in the sense that a submenu appears after
selecting most of the top-level menu commands. Two different top level menus are
available. The main menu can be selected from a.nywhe;re on the screen and provides
a majority of the user interface. The node menu is available only in the network level
window by clicking the mouse on a node. Each menu and its respective submenus are

described in detail in the following sections.

3.2.1 Main menu

Most of the dynamic changes in the simulation are done with the main menu (shown
in Figure 3.7). The main menu is obtained by pressing the right mouse button down
anywhere on the screen and holding it down. Selections are made by dragging the mouse
to the desired selection and releasing the button. The first selection in the main menu is

Pause. This toggles the pause feature. Selecting this when the simulation is running will

11

cause the simulation to stop until this selection is made again. This is useful in closely
examining the details of the simulation and reconfiguring the dynamically changeable
parameters of the simulation.

The second choice, Select Speed, displays the dialog box shown in Figure 3.8. This
dialog box is also displayed at the beginning of the simulation in order to pick the initial
speed of the simulation. The simulation speed can be changed throughout the entire
simulation. Different speeds are attained through nested delay loops. The fastest speed
does not go through any delay loops.

In all the windows except the network level window, the facilities display the mean
queue length, utilization, mean response time and mean service time graphically with
bars. Since the values of the mean queue length, mean response time and mean service
time can be anything from a very small to a very large value, the ranges for each of these
metrics can be specified dynamically by the user. The ranges can be changed through
the main menu selection, Select Ranges. There is no need to change the range for the
utilization because the value will always be between 0 and 1. A submenu is displayed
(Figure 3.9), allowing the user to choose the metric whose range is going to be changed.
A dialog box is displayed for both the high and low values. The dialog box for changing
the high mean queue length value is shown in Figure 3.10. For all of these dialog boxes,
the cursor needs to be in the dialog-box in order for the keyboard input to be read. If

the number is highlighted, anything typed on the keyboard will replace the old number.

12

To highlight the number, just drag the mouse over the number using any button. After
changing the ranges, all the facilities will be updated with the new ranges.

Any or all of the windows can be redisplayed with the Redisplay Windows. The
submenu shown in Figure 3.11 allows the user to choose a single window or all of them
to be redisplayed. Since the network level window is the only window that is always
displayed, a user can pick a window that is not currently open. .Nothing is 'redisplayed
when an unopen window is selected.

To turn off the communication messages, select the main menu entry Comm. On/Off.
The submenu shown in Figure 3.12 will be displayed. Each window that has commu-
nications can have its messages turned off individually. This allows the user to see
communications in one window and not in another if desired. Turning off the communi-
cations can greatly speed up the simulation. Again, a window can be chosen that is not
currently open. In this case, turning off the communications will have no effect.

To open or close any window except the network level window, select Open/Close
Windows jn the main menu. A submenu will appear (Figure 3.13), listing the four
different windows available. Selecting a window will toggle that window’s status. For
example, if the physical level window was not open, selecting the physical window would
open it. Otherwise, if it was already open, it would close. The network level window is
always displayed; therefore it cannot be opened or closed.

The method for exiting the graphic viewing package is provided in the main menu.

Select Fzit and all of the open windows will be closed.

13
3.2.2 Node menu

The node menu operates on only one node at a time. For example, if there are
multiple nodes in the network level window, and the cursor is moved to a particular
node, pushing the left mouse button displays the node menu. All of the functions of
the node menu would then operate only on the node that was clicked upon. The node
menu (Figure 3.14) serves two purposes. First, the user can select the facility, process or
mailbox, which is contained in that particular node and which is to be displayed in the
network level node. Second, the user can select nodes for inclusion in either the selected
physical level window or the selected detailed level window.

Selecting Facilities, Processes, or Mbozes, causes a submenu listing the names of all
the facilities, processes or mailboxes contained in that node to be displayed. Each node
will have unique submenus. Selecting one object will cause that object to be displayed in

the node at the network level. An example of a facilities submenu is shown in Figure 3.15.

14

Read
Initialization
File

Build and Check
Data Structures

Mouse YES
Event?
N
Read Log
File
Process
Mouse
Event
Update
Graphics

Figure 3.1: Program Flow Chart

15

Network Level

Communications
Physical Level Selected Physical Level Detailed Level Selected Detailed Level
No Communications No Communications Communications Communications

Figure 3.2: Window Hierarchy

Network Level Init file: /usr/roundup/kgosueni/ceine/exmple/go/1bal _ex/lbal.init Log file: /uer/rounduprkgosweni/csine/exmple/gp/1bal_ex/1bel.log
Cosm: OM Clock:15,000000
Hewgl

Figure 3.3: An Example of a Single Bus Network Level Window

16

/ghabemabe, init Log File: Amr/rondp/k

1
L/ g

Totuark Lavel Init file: Ar/rowndip/kgommi/caims/!

Figure 3.4: An Example of a Hypercube Network Level Window

17

Physical Lovel Init file: testall.init Log file: testall.log

Conn: ON Clock:

Hesgl:

Mesg2:

Misc Memory Disk [™) wem| (0P

s . am disc a bus I lo

o) 0,00 LO g 0,00 4,00 W 0,00 4,00 n 0,00 4,00 ") 0,00 4,00
0.09 0,00 0,00 0.00 0.00

v 0,00 LY |, 0,00 Lo |, o (] v _o,ou 1o |, ¢ 00
0,00 0,00 0,00 0.00 0.00

= 0,00 5,00 " 0,00 % _ | g 22 1] ® 0,00 91 L2 §,00
0.00 0,00 0,00 6,00 0.00

s 0,00 5,00 " 0,00 5,00 s 9,00 s.wj s 0,00 5,00 s 0,00 5,00
0,00 0,00 0,00 0.00 0

Figure 3.5: An Example of a Physical Level Window

Detailed Yiew Init File: /usr/roundup/kgosumi/caine/exanple/epylbal_sx/lbal . init Log File: /uar/roundup/kgoseant/caine/eumple/gpv1bal_ex/1bal, log
Com; (N PASE! Clock: 7.970488
Yewgl:

Figure 3.6: An Example of a Detailed Level Window

18

Pause
Select Speed
Select Ranges

Redisplay Windous
Comn, On/Off
Open/Close Windous |-

Exit

Figure 3.7: Main Menu

Select Simulation Speed
O1 - Fastest

Q2

o3

Q4 - Slowest

Figure 3.8: Speed Selection Dialog Box

Mean Q Length Range
Mean Resp, Range
Hean Ser. Range

Figure 3.9: Select Ranges Submenu

19

High Hean Q Length Value
[|
Cx)

Figure 3.10: An Example of a Range Selection Dialog Box

All Windows
Network Level
Phusical Level

Selected Physical Level
Detailed Level
Selected Detailed Level

Figure 3.11: Redisplay Window Submenu

Network Level
Detailed Level
Selected Detailed Level

Figure 3.12: Communications On/Off Submenu

20

Physical Level
Selected Physical Level
Detailed Level
Selected Detailed Level

Figure 3.13: Open/Close Windows Submenu

DISPLAY

Facilities
Processes
Mboxes

Select This Node

Figure 3.14: Smallnode Menu

Figure 3.15: Smallnode Facilities Display Submenu

21

CHAPTER 4

DESIGN

The development of this graphic viewing package is based on InterViews [6], a graph-
ical user interface toolkit. InterViews is a library of C++ [7] classes that define common
interactive objects and composition strategies. The InterViews classes .are based on the
X windowing system, but the developer .is totally removed from any interaction with the
X windowing system. The application’s user interface is defined in terms of InterViews
objects, which communicate with the windowing and operating systems.

InterViews provides three different types of objects: interactive type objects such as
menus and buttons, structured graphic type objects such as circles and polygons, and
structured text objects. New classes were created for this simulator by deriving them
from the base classes provided by InterViews. The new classes are discussed in detail in

the following section.

22

4.1 Classes

A majority of the derived classes are the interactive type, derived from the InterViews
class Scene. This base class provides member functions called Redraw, Resize, Reconfig
and Handle that are used in the derived classes. Redraw is used to draw all of the
graphics in that object by calling InterViews routines to draw lines, rectangles and oth.er
geometric objects at specific locations. Resize recalculates the locations of the graphics
in the object if the object size happens to be changed. Reconfig determines the object’s
size, stretchability and shrinkability. Handle takes care of all the key and mouse events.
All of the graphic classes derived from Scene use derived versions of these routines. One
advantage of a Scene derived class is the ability to insert other graphics objects into
it. For exa.mpie, two Scene derived classes in InterViews are HBox and VBox. When
multiple objects are inserted into an HBox, they form a horizontal row of objects. The
VBox class creates vertical rows of graphic objects. Together, the HBox class and the
VBox class can be used to construct complex graphic displays. This is how the windows
are created.

The main class is called Idraw!. As far as the graphics and the user interface is
concerned, Idraw creates the Network level window and handles the main menu mouse
inputs. Idraw also takes care of some non-graphic tasks, such as reading in the initial
simulation structure, building the data structures and checking the correctness of the

simulation structure.

1The name Idraw came from a program written in InterViews on which the structure of this simulator
was originally based. Now the two Idraw classes barely resemble each other.

23

A new class was derived for each of the additional windows. These classes are con-
structed when the user requests a new window to be added through a mouse operated
menu.

Several classes were derived which represent different types of CSIM objects. Each of
these classes has a special member function called Updatedata. This routine updates all
of the data in the object without redrawing the entire object. In other words, only the
data that are being updated are redrawn. This is to speed up the updates and reduce
the flashing effect on the screen.

The Facility class is an interactive graphics object that displays information on CSIM
facilities. The Facility class was subclassed into specific types of facilities such as CPU,
disk, tape, memory, etc. An example of a CPU facility is shown in Figure 4.1. Facilities
display mean queue length, utilization, mean response time, mean service time, and also
a little icon depending on the specific facility type. All of the different available facility
types can be seen in Figure 3.5.

The Process class represents a process that runs on a facility in the same way as a
CSIM process. An example is shown in Figure 4.2. Processes belong to a certain facility
and display four flags and a queue. The four flags are independent binary flags that the
user can set or reset individually or as a group. The meaning of these flags is determined

by the user. Processes generate all of the communication messages in the simulation.

24

The last class that is directly related to a CSIM object is Mbox. Figure 4.3 shows
an example of a Mbox. Mboxes represent mail boxes that receive communication mes-
sages. They belong to a Process and display a queue which represents the cornmunication
messages that have been received and are waiting for processing.

The network view window has a special graphics class that represents each node called
Smallnode. Each Smallnode can display any facility, process or mbox that is contained
in that node. An example of a Smallnode displaying a facility called cpuf[00] is shown in
Figure 4.4. The user can dynamically choose which object to display through a mouse-
driven menu.

All of the windows which display communica.tion messages have special communi-
cation classes. In the network level, these classes display the connectivity of the nodes
along with the transfer of messages. The messages are either color coded on color systems
or pattern coded on black and white systems for the different types of messages. The
methods used for displaying communication messages are discussed in more detail later

in this thesis.

4.2 Data Structures

The data structures are designed to allow fast updates of the graphics and also retain
the structural dependence. For fast graphic updates, pointers are needed for each graphic
object. An easy method for obtaining the correct pointer for each object is also needed.

This is accomplished by using hash tables for the facilities, processes and mailboxes. The

25

objects are hashed on their ID number and the hashing algorithm is a modulo arithmetic
approach. The ID number modulo the size of the hash table results in the hash table
entry number. Each hash table entry is a linked list of graphic objects. The next pointer
of the linked list is built into each graphic class. Therefore, in the case of collisions, a
linked list is traversed to find the correct graphic object. A graphic object is created for
each facility, process and mailbox despite the fact that at the onset of the simulation they
are not displayed. These original graphic objects are used in the detailed window and
they always exist. They contain all of the up-to-date information, e.g., facility utilization
and mean queue length, process flags, mailbox queues, etc. When the detailed window is
created, these original objects are used and inserted into the window. For all the other
new windows, new auxiliary graphic objects are created, the vital information is copied
into the new objects, and they are then inserted into the new window. Pointers to the
new objects are kept in the original graphics object. These auxiliary objects are deleted
when the window is closed. When updating the data, the original objects are updated
first, then, if any other windows are open, the auxiliary objects are updated.

The smallnodes used in the network level are linked directly to the original graphic
objects by pointers. The original graphic objects provide the simulation data needed
to.be displayed by the smallnode. This is how the different objects can be displayed in
the same node. When a different facility, process or mailbox, is chosen to be displayed,
a special pointer is set to the correct graphic object so that the smallnode can obtain

the data needed for display. Therefore, the smallnode actually contains no data in itself.

26

It gets everything from the original objects. Thus, to update the simulation data, the
original objects are updated first and then the smallnodes are redrawn. The new data
will be used when the smallnode is redrawn.

The original graphic objects also contain the structural dependence information. Each
node has a linked list of facilities that are contained within that node, each facility has
a linked list of processes that are contained in that facility and lastly, each process has a
linked list of mailboxes in that process. .f\lso, in the graphic objects are the ID numbers
of its structural parent. For example, each process has its facility’s ID number and its
node number.

The original graphic objects ;,re created from the initialization file. The structural
dependence is checked to see if there are any contradictions. For example, a mailbox
may belong to a certain process in node A, but the initialization file may say the mailbox
belongs to node B. If there is a discrepancy, a warning is printed and the data structure

is modified to a point were the contradictions are eliminated.

4.3 Communication Messages

Communication messages are displayed at two different levels: the detailed level and
the network level. The network level communications are dependent upon the archi-
tecture type while the detailed level communications remain the same regardless of the

architecture.

27
4.3.1 Detailed level

In the detailed level, the messages always originate at a process and arrive at a
mailbox. There are three different typés of graphic objects used to display a message.
First, there is the message origination point called a Port. The remaining two graphic
objects are vertical and horizontal communication objects called Vcomm and Hcomm,
respectively. The vertical communication objects run vertically next to the mailboxes,
processes and ports. The horizontal communication objects are in a single row at the
bottom of the window, connecting all of the different facilities. An example of the
placement of the graphic objects can be seen in Figure 4.5.

In order to quickly draw messages, a method was needed to obtain pointers to the
necessary communication objects. Thus, each process object has a pointer to a port
object and each port has a pointer to a Vcomm object. A column of Vcomm objects
is actually a linked list. Therefore, when a message is going to a different facility, the
column is traversed until the end, drawing the message. Each Vcomm object may also
be addressed by its adjacent mailbox. In other words, every mailbox has a pointer to the
Vcomm object directly to the right of it. This is to facilitate the termination of messages.

The Hcomm objects are used only when a message is sent to a different facility. An
array of Hcomm objects is created after the total number of facilities is first known. The
size of the array is four times the number of facilities in the simulation. Half are used for
the detailed window and the other half are used for the selected detailed window. For

every facility, an Hcomm object is used under the processes and another is used under

28

the mailboxes. By knowing the column of the originating facility and the column of the

terminating facility, the message can be drawn on the proper Hcomm objects.

4.3.2 Network level

In the network level, all the communications are dependent upon the architecture
type. The single bus and the unconnected architecture types are considered the same as
far as communications are concerned, meaning the messages are drawn the same. The
only difference is whether or not the bus is drawn. Therefore, presently, only two different
types of communications exist in the network level: single bus and hypercube.

The single bus messages are relatively simple. There are basically two different types
of communication objects, a vertical one and a horizontal one called Vtopcom and Htop-
com, respectively. A Htopcom separates two rows of nodes. There are always an even
number of rows except when there are less than four nodes. In this case, there is only one
row of nodes. An example of a sixteen-node layout is shown in Figure 4.6. The Htopcom
knows how many nodes are connected to its top side and to its bottom side. The Vtop-
com objects connect multiple Htopcoms. By knowing the columns of the originating and
terminating nodes, and the originating and terminating Htopcom objects, a message can
easily be drawn.

The hypercube network is more complex and is limited to the sixteen-node case. Only
one type of communications graphic object is used: Tophcom. The different Tophcom
objects are differentiated by their ID numbers. The placement of the Tophcom objects

and the smallnodes are shown in Figure 4.7. Using the ID numbers, the size and location

29

of the Tophcom objects is known. This information is used to draw the connections and
the messages. Since messages may have to traverse many different graphic objects, a
method was obtained to identify paths from node to node. In each smallnode object,
two arrays of sixteen pointers to Tophcom objects exist. One array points to the first
Tophcom object in the path to a certain node and the other points to the last, called
startcom and endcom, respectively. For example, for the path from node 4 to node 12,
the twelfth entry in the startcom array in smallnode 4 would contain the pointer to the
first Tophcom object (Tophcom 9) in that path. The array entries that correspond to
the nodes that are not directly connected to this node are set to nil. The Tophcom
objects are conne_cted in linked lists depending on which path is desired. There exist
thirty-two unique paths from node to node. The path traversal always originates from a
lower numbered node and terminates at the higher numbered node. In order to draw a
message, only a linked list needs to be traversed. A Tophcom object knows from its ID

number and the node-to-node path where to draw a message.

4.4 Faults

The simulator can display two different types of faults. The first is a facility fault
and the second is a node fault. Both fault types are.displayed in the network level as an
”X?” across the entire node. The two types of faults are differentiated by either color or

pattern. A node fault is either red or solid black, while a facility is either green or gray.

30

In the physical and detailed level windows, the facility fault is also displayed. It is also

drawn as an ”X” across the entire facility in either green or gray.

31

Figure 4.1: An Example of a CPU Facility

process)
EH

0

Figure 4.2: An Example of a Process

T

Figure 4.3: An Example of an Mbox

32

Figure 4.4: An Example of a Smallnode

Port Vcomm

Process
Mailbox Veomm
Hcomm Hcomm

Figure 4.5: An Example of Detailed Level Communication Graphic Object Placement

33

Node 0 Node 1 Node 2 Node 3
Vtopcom Htopcom
Vtopcom Node 4 Node 5 Node 6 Node 7
Vtopcom
Vtopcom | Node 8 Node9 | | Node 10 Node 11
Vtopcom Htopcom

Node 12 Node 13 Node 14 Node 15

Figure 4.6: Network Level Single Bus Communication Graphic Object Placement

34

Tophcom 0 N;)ge Tophcom 1 Nloge
Tophcom 2
N%de Tophcom 3 N';de Tophcom 4
Tophcom §
Tophcom 6 N%de Tophcom 7 N‘;de Tophcom 8
Tophcom 9
Tophcom 10 N‘;de Tophcom 11 N°5de Tophcom 12
Tophcom 13
Tophcom 14 N‘;de Tophcom 15 N%de Tophcom 16
Tophcom 17
Tophcom 18 N%de Tophcom 19 N%de Tophcom 20
Tophcom 21
Tophcom 22 N;);‘le Tophcom 23 Nfsde
Tophcom 24
Ngge Tophcom 25 N;’iie Tophcom 26

Figure 4.7: Network Level Hypercube Communication Graphic Object Placement

35

CHAPTER 5

A LOAD BALANCING SIMULATION

Load balancing is a method of spreading out the load among many different nodes in
a distributed system. The main objective is to reduce the response time of the overall
system by moving jobs from heavily loaded nodes to less heavily loaded nodes. Of course
there are tradeoffs involved, such as the communication costs of sending system status
information to all the nodes and transferring jobs from node to node. Many different load
balancing algorithms exist but a simple one was chosen as an example of this graphic
viewing package’s capabilities.

The load balancing algorithm in this example runs on each individual node. Each
node decides, when a new job is created at that node, whether or not to move the job to
another node or process the job at that node. The algorithm makes its decision based on
what it thinks is the size of each node’s present mean queue length. Periodically, a node
will broadcast its own mean queue length to all the other nodes. The tradeoff with this

algorithm is the cost of frequent broadcasts versus up-to-date information about each

36

node. With more up-to-date information about each node a better decision can be made
as to whether or not to transfer a job, and if the job is transferred, which node should it
be transferred to. More details about this load balancing algorithm can be found in [8].

This example is made up of ten regular nodes and one general node. The general node
(Node 10) is a special node for this simulation that does not exist in reality. It represents
the work load generator for all the other nodes. Jobs are created in the general node
and are sent to a node determined by a uniformly distributed random process. The work
done by the general node uses no resources and does not affect the simulation. From a
regular node’s point of view, jobs are being created inside of itself. In Figure 5.1, a job
is being created in the general node- and sent to Node 9. When a node broadcasts its
mean queue length to all the other nodes, it is displayed as many different messages, all
of them originating from one node. One broadcast message, originating from Node 7, is
shown in Figure 5.2. Figure 5.3 shows a job being transferred from Node 8 to Node 0.
The algorithm is working correctly because Node 8 has a mean queue length of 3 and
Node 0 has a mean queue length of 0. On closer inspection, it can be seen that Node 9
has a mean queue length of 0 and a utilization value of 0.0 while Node 0 has a utilization
value of 0.4, indicating that Node 9 would probably be a better choice than Node 0.

As the simulation progresses, it is quite obvious that this load balancing algorithm is
not very effective. Figure 5.4 shows Node 6, Node 8 and Node 9 with mean queue lengths
of almost 2 and a utilization values of almost 1.0, while Node 3, Node 4 and Node 5 have

mean queue lengths of 0 and utilization values of 0.0.

37

By displaying this simulation graphically, it was simple to verify that the algorithm
was working correctly. It was also quite obvious that the algorithm was too simplistic to

provide effective load balancing.

38

Network Lovel Init file: /w/ruﬂn/kwl/aiw/mldw/]hl_u/lbnl.lnu Log files /w/ruMmi/aim/mldw/lbal_ox/lbﬂ.loa
Coma ON PRUSEl Clock: 11,000000

Job_xfer

Figure 5.1: Arrival of a New Job

Network Lovel Init file: Juer/rounde/kgoesni/csine/axmele/gv 1bal_sx/lbal, init Log file: Jusr/rourdup/kgossnt/cainv/example/gad 1bal _ex/lbal, log
. Comm: ON PAUSEl Clock: 13.421685

Figure 5.2: Broadcasting a Mean Queue Length

40

Phusical Level Init File: Jusr/roundup/kgosuami/csine+/exanple/gp/1bal _ex/lbal.init Log fi
Comm: OFF PAUSE! Clock: 17.388%567
Mesgl:
Mesg2:

Node 0

CPu
CPUL00]

Figure 5.4: Load Balancing Physical Level

39

Netvork Level Init flle: /usr/roundup/kgosusni/caine/exanple/gov/1bal _ex/1bal. init Log file: I /eondup/igosimi/caine/axgpole/ @/ 1bal ex/1bal log
Clocks 12.806152

Comn: ON PAUSE|

Job_xfer

“eo—3o o—o
mﬂnlw mu_”ln
g 0O g D
S g——Do ®a—o

munlw

g 0O°

Transfer of a Job

Figure 5.3

41

CHAPTER 6

CONCLUSIONS

In this thesis, a graphic viewing system that can be interfaced to a complex simulation
environment is described. The viewing system is currently linked to the CSIM simulation
language. After developing a CSIM simulation, the simulation can be played back fo show
the progress of the simulation in real time. Analyzing the simulation in real time can
give a more realistic view of the true behavior of the system. Some of the simulation
features that can be viewed are the communication messages, the mean queue length,
utilization, mean response time and mean service time of the resources, and message
queues. Presently three different architecture types are supported: single bus, hypercube
and unconnected.

In the future, this graphic viewing package could be expanded to handle more ar-
chitecture types. Also, additional functionality could be added to the simulator’s clock
feature, e.g., allowing breakpoints to be set, and allowing the simulation time to be moved

forward or backward.

42

REFERENCES

[1] H. Schwetman, “CSIM: A C-based, process-oriented simulation language,” in Winter
Simulation Conference, IEEE, 1986.

[2] J. C. Browne, D. Neuse, J. Dutton, and K. C. Yu, “Graphical programming for
simulation of computer systems,” in Simulation Symposium, IEEE, 1985.

(3] J. F. Kurose and K. J. Gordon, “A graphics-oriented modeler’s workstation environ-
ment for the research queueing package (RESQ),” in Fall Joint Computer Conference,
IEEE, 1986.

[4] C. Sauer, E. MacNair, and J. Kurose, “RESQ: CMS user’s guide,” Research Report
RA-139, IBM, Yorktown Heights, N.Y., April 1982.

(5] B. Melamed, “The performance analysis workstation: An interactive animated sim-
ulation package for queueing networks,” in Fall Joint Computer Conference, IEEE,

1986.

[6] M. A. Linton, J. M. Vlissides, and P. R. Calder, “Composing user interfaces with
interviews,” IEEE Computer, vol. 22, pp. 8-22, February 1989.

[7] B. Stroustrup, The C++ Programming Language. Reading, Massachusetts: Addison-
Wesley, 1986.

(8] K. Goswami, “Load sharing base on task resource prediction.” M.S. thesis, University
of Nlinois, Urbana, IL, 1988.

